Soal Program Linear Sma Dan Pembahasan Soal Un
4 dan 8 PEMBAHASAN: Dari soal dapat diresume dalam tabel berikut; Model matematika yang dapat dibentuk: x + 2y ≤ 20 1,5x + 0,5 y ≤ 10 atau 15x + 5y ≤ 100 Kita cari titik potong kedua garis tersebut: subtitusikan x = 4 dalam persamaan x + 2y = 20 4 + 2y = 20 2y = 16 y = 8 maka, banyak model A = 4 dan model B = 8. Blog seputar matematika SMA, ringkasan materi, contoh dan latihan soal, pembahasan soal UN dan SBMPTN.
Pelajaran soal & rumus aplikasi program linear menyelesaikan masalah program linear dengan metode uji titik pojok menyelesaikan masalah program linear dengan metode uji titik pojok contoh soal program linier contoh soal carapedia penerapan konsep program linear dalam kehidupan sehari hari pelajaran soal & rumus aplikasi program linear model matematika dari grafik program linear kelas 11 bse k13 uk program linear kelas xi matematika sman k13 revisi 2017 pembahasan program linear contoh soal dan pembahasan program linear sistem pertidaksamaan linear dua variabel contoh • • • • • • • • • •.
Sam used to attend college, but gave that up so he could pursue art as a profession, then setting up www.sapphirefoxx.com. Sapphirefoxx bilibili. At first, the website was to be a site were you could browse content for free. This was because of the various adds originally on the site.
EBTANAS 2002/P-1/No.23 Nilai minimum fungsi objektif x+3y yang memenuhi pertidaaksamaan 3x +2y. 24 @ Objektif Z = x +3y (berat ke y) berarti hanya dibaca: minimumkan Z = x minimum, PP harus gBesarh, maksudnya pilih pertidaksamaan yang besar g. g ambil nilai Peubah yang gBesarh 3x +2y. 8 cc.x = 8, terlihat peubah besar = 8 maka Zmin = x = 8 @ @ Objektif Z = AX +By Misal berat ke y ( B > A) Maka Zmin = AX Zmaks = By 3 2. EBTANAS 2001/P-1/No.10 Untuk daerah yang diarsir, nilai maksimum dari fungsi objektif T = 3x+4y terjadi di titikc A. S g adalah garis selidik 3x +4y = 12.Perhatikan garis gf berada di R, artinya maksimum fungsi T beradadi R S R Q O P 3 4 g g' memotong R di paling kanan (garis selidik) (digeser sejajar ke kanan) S R Q O P 2x +y = 8 x +2y = 8 x +y = 5 4 3.
UAN 2003/P-1/No.23 Nilai maksimum bentuk objektif (4x +10y) yang memenuhi himpunan penyelesaian system pertidaksamaan linier x. 24 @ Objektif Z = 4x +10y (berat ke y) berarti hanya dibaca: maksimumkan Z = 10y Maksimum, PP harus gKecilh, maksudnya pilih pertidaksamaan yang kecil g. g ambil nilai Peubah yang gkecilh x +y.
16 c y = 8, terlihat peubah kecil = 8 p @ Objektif Z = AX +By Misal berat ke y ( B > A) Maka Zmin = AX Zmaks = By 5 4. Nilai maksimum dari z = 30x +20y untuk (x,y) yang terletak dalam daerah x +y ’ 6, x +y 3 3, 2 ’ x ’ 4 dan y 3 0 adalahc A.
180 @ Z = 30x +20y a ambil nilai x pertidaksamaan kecil pada interval 2 ’ x ’ 4, berarti x = 4 @ x = 4 substitusi ke x + y = 6 di dapat y=2. Dengan demikian nilai z maksimum akan di capai pada titik (4,2) @ zmax = 30.4 +20.2 = 120 + 40 = 160 p p Sasaran Max, berarti pilih pertidaksamaan dan peubah (PP) gKecilh 6 5. Seorang anak diharuskan makan dua jenis vitamin tablet setiap hari. Tablet pertama mengandung 4 unit vitamin A dan 3 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 2 unit vitamin B. Dalam satu hari ibu memerlukan 24 unit vitamin A dan 7 unit vitamin B. Jika harga tablet pertama Rp 50,00/biji dan tablet kedua Rp 100,00/biji, maka pengeluaran minimum untuk membeli tablet perharic.